Defining the rate-limiting processes of bacterial cytokinesis.
نویسندگان
چکیده
Bacterial cytokinesis is accomplished by the essential 'divisome' machinery. The most widely conserved divisome component, FtsZ, is a tubulin homolog that polymerizes into the 'FtsZ-ring' ('Z-ring'). Previous in vitro studies suggest that Z-ring contraction serves as a major constrictive force generator to limit the progression of cytokinesis. Here, we applied quantitative superresolution imaging to examine whether and how Z-ring contraction limits the rate of septum closure during cytokinesis in Escherichia coli cells. Surprisingly, septum closure rate was robust to substantial changes in all Z-ring properties proposed to be coupled to force generation: FtsZ's GTPase activity, Z-ring density, and the timing of Z-ring assembly and disassembly. Instead, the rate was limited by the activity of an essential cell wall synthesis enzyme and further modulated by a physical divisome-chromosome coupling. These results challenge a Z-ring-centric view of bacterial cytokinesis and identify cell wall synthesis and chromosome segregation as limiting processes of cytokinesis.
منابع مشابه
Cytokinesis in the C. elegans embryo: regulating contractile forces and a late role for the central spindle.
Genetic and molecular studies in the nematode Caenorhabditis elegans have identified multiple essential pathways that regulate and execute cytokinesis in early embryonic cells. These pathways influence both the microfilament cytoskeleton and the microtubule cytoskeleton. Microfilaments are enriched throughout the cell cortex at all times during the cell cycle in embryonic cells. Cortical microf...
متن کاملMechanical Stress and Network Structure Drive Protein Dynamics during Cytokinesis
Cell-shape changes associated with processes like cytokinesis and motility proceed on several-second timescales but are derived from molecular events, including protein-protein interactions, filament assembly, and force generation by molecular motors, all of which occur much faster [1-4]. Therefore, defining the dynamics of such molecular machinery is critical for understanding cell-shape regul...
متن کاملChromosome Structuring Limits Genome Plasticity in Escherichia coli
Chromosome organizations of related bacterial genera are well conserved despite a very long divergence period. We have assessed the forces limiting bacterial genome plasticity in Escherichia coli by measuring the respective effect of altering different parameters, including DNA replication, compositional skew of replichores, coordination of gene expression with DNA replication, replication-asso...
متن کاملBacterial cytokinesis: Let the light shine in
Recent application of fluorescence microscopy to the study of the bacterial cell cycle has revealed the existence of a cytoskeletal element - once thought to occur only in eukaryotic cells - that mediates cytokinesis, and possibly another involved in chromosome segregation.
متن کاملPlant Cytoskeleton: Reinforcing Lines of Division in Plant Cells
Cytokinesis in plants has unique features concerned with defining and maintaining the line of cell division. Recent studies have identified key cytoskeletal components and events that help to ensure the fidelity of cytokinesis in higher plants.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 113 8 شماره
صفحات -
تاریخ انتشار 2016